BIFURCATION ALONG CURVES FOR THE p-LAPLACIAN WITH RADIAL SYMMETRY

نویسنده

  • FRANÇOIS GENOUD
چکیده

We study the global structure of the set of radial solutions of a nonlinear Dirichlet eigenvalue problem involving the p-Laplacian with p > 2, in the unit ball of RN , N > 1. We show that all non-trivial radial solutions lie on smooth curves of respectively positive and negative solutions, bifurcating from the first eigenvalue of a weighted p-linear problem. Our approach involves a local bifurcation result of Crandall-Rabinowitz type, and global continuation arguments relying on monotonicity properties of the equation. An important part of the analysis is dedicated to the delicate issue of differentiability of the inverse p-Laplacian, and holds for all p > 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation analysis and dynamics of a Lorenz –type dynamical system 

./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...

متن کامل

تحلیل عددی انشعاب فولد- چنگال با تقارن 2‌Z و کاربرد آن در جریان سیال در لوله

In this paper, we study the numerical analysis of fold-pitchfork bifurcation with Z2 symmetry. For this purpose, explicit formulas for the critical coefficients of this bifurcation are obtained and non-degeneracy conditions of this bifurcation are determined. Then, local bifurcations, bifurcation curves and phase portraits are computed by MatCont toolbox. We will emphasize an example serving as...

متن کامل

COMPARISON PRINCIPLE AND CONSTRAINED RADIAL SYMMETRY FOR THE SUBDIFFUSIVE p-LAPLACIAN

A comparison principle for the subdiffusive p-Laplacian in a possibly nonsmooth and unbounded open set is proved. The result requires that the involved sub and supersolution are positive, and the ratio of the former to the latter is bounded. As an application, constrained radial symmetry for overdetermined problems is obtained. More precisely, both Dirichlet and Neumann conditions are prescribe...

متن کامل

An unusual case of radial polydactyly, (tetraplication of the thumb, duplication of the radial carpal bones and bifurcation of the radius)

  Radial polydactyly, the most common digital duplication in Asian and white populations, has a wide range of manifestations. Its classification is useful for planning and assessing surgical treatment. Our patient had four thumbs, duplicated radial carpal bones, and a bifurcated radius. This presentation is not covered by any of the current classifications. To the best of our knowledge, this is...

متن کامل

Simulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy

Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013